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Abstract 
We have assessed the performance of 7 state-of-the-art coupled seasonal climate prediction models 
in terms of their ability to predict rainfall for 2 regions within south-eastern Australia. The 
assessment is based on a comparison of hindcast and observed data for the Mallee region and the 
upper Murrumbidgee catchment region. The target periods and start dates include May to October 
from May 1 and August to October from August 1. Up to 44 years of data were assessed, with each 
model generating an ensemble of 9 hindcasts for each time period. The assessment reveals that the 
models are characterised by only modest skill and that most of this is due to being able to capture 
dry and wet episodes associated with either El Nino or La Nina events. Typically the models were 
successful at hindcasting above or below median rainfall between only 50% and 60% of the time. 
There was no evidence of a single superior model and there was also no evidence that the 
construction of a multi-model ensemble adds any significant skill. 
 
Introduction 
The basis of most current seasonal forecast schemes is the fact that El Nino Southern Oscillation 
(ENSO) events represent the largest source of interannual climate variability beyond the seasonal 
cycle. ENSO events can be predicted to some extent since they evolve over the course of several 
months and there are a number of indices which can be used to predict the likelihood of occurrence. 
This method of seasonal prediction is described as statistical (as opposed to dynamical) and tends to 
only provide information about key ENSO indices such as sea surface temperatures or the Southern 
Oscillation Index (SOI). In general, dynamical based prediction schemes take an initial state of the 
atmosphere and ocean, and predict the evolution of both well into the future. This is analogous to 
weather prediction except that the aim is to predict seasonal averages of quantities such as rainfall 
and temperature rather than specific events. The genesis of ENSO events appears to lie in a 
complex interaction between Pacific surface wind stresses, sub-surface heat content and sea surface 
temperatures during the early part of the year. One potential advantage of dynamical schemes over 
statistical schemes lies in the fact that they can be initialised with this type of information and 
should, in theory, be more capable of correctly predicting the evolution of ENSO events. 
 
Another advantage of dynamical prediction schemes is that they tend to be global and predict a 
range of climate variables such as temperature and rainfall. Reliable long-term rainfall predictions 
would, obviously, be of enormous benefit to a wide range of industries – particularly in Australia 
where the year to year variability of rainfall is relatively high compared to other continents. 
However, predictive skill varies considerably with the variable being predicted, the geographic 
location, the time of year and lead time. While researchers who develop prediction models mainly 
focus on maximizing their level of skill, possibly more important is the need to convey any 
predictive information in a manner that provides end-users with the best opportunity to benefit from 
any skill (Hartmann et al, 2002, various authors, 2005). 
 
A study by Smith (2005) focussed on the skill of a suite of dynamical prediction models at 
predicting seasonal rainfall and inflows for the Burrinjuck Dam located within the upper 
Murrumbidgee catchment (UMC) region of south east Australia (SEA). The models exhibited only 
moderate skill, mainly associated with extremes associated with ENSO events. Furthermore, the 
value of this moderate level of skill was somewhat questionable. Here we extend the analysis of 
rainfall predictions from the same suite of models to include another region within SEA where the 
major activity is growing crops. The aim is to determine if there is any skill at predicting rainfall 
from early in the season with sufficient time to modify on-farm management decisions early in the 
year. In particular, we focus on the benefits that may be associated with adopting a multi-model 
approach to constructing a seasonal forecast. These have been identified in several studies including 
Palmer et al. (2004), Hagedorn et al. (2005) and Doblas-Reyes et al. (2005).  
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Data and methods 
DEMETER is the acronym of the EU-funded project entitled "Development of a European 
Multimodel Ensemble system for seasonal to inTERannual prediction". The objective of the project 
is to develop a well-validated European coupled multi-model ensemble forecast system for reliable 
seasonal to interannual prediction. This obviously involves models capable of simulating ENSO 
events. A fundamental aspect is to establish the practical utility of such a system, particularly to the 
agriculture and health sectors (see http://www.ecmwf.int/research/demeter/ ). 
 
The DEMETER set of results refers to hindcasts from 7 different European coupled models made 
for different periods up to the end of year 2001. The longest sets of results are associated with 
models which begin in 1958 and the shortest set is with the CERFACS model which begins in 1980 
(Table 1). For each year, the DEMETER hindcasts were initialised on four specific dates 
(February1, May 1, August 1 and November 1) and then run forward in time for 6 months (Figure 
1).Each set of results comprise an ensemble of 9 members initialised slightly differently on the 
same date. For further details see Palmer et al. (2004). 
 
 
Table 1. DEMETER model and hindcast periods. 
 
UKMO (UK)   1959-2001 
MPI (Germany)   1969-2001 
METEO (France)   1958-2001 
LODYC (France)   1974-2001 
CERF (France)   1980 -2001 
INGV (Italy)   1973-2001 
ECMWF    1958-2001 
 
 

 
 
1st                               1st                              1st                              1st 
*……………………………………………> 
                                   *-------------------------------------------------> 
                                                                      *………………………………………..> 
                                                                                                      *…………………… 
……………………> 
 
Figure 1. Start dates and length of hindcast runs.  
 
 
Hindcast data were extracted for the Mallee region (-37o to -34o S, 141o to 144o E)   and the UMC 
region (-36o to -34o S, 148o to 150o E) see Figure 2. These two regions were selected because they 
correspond to crop growing and water resource management activities respectively. Furthermore, 
because ENSO-related rainfall anomalies are large-scale (e.g. see Smith, 2004), any assessment of 
skill within these regions is believed to be representative of the larger region. 
 
 

http://www.ecmwf.int/research/demeter/�
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Figure 2. Location of regions within the SEA broader region where model predictions have been 
assessed.  
 
 
For both regions, we assess the rainfall predictions for the May to October season, from May 1 start 
dates, and also the August to October rainfall predictions from August 1 start dates. These represent 
medium and longer-term seasonal predictions and are selected since these times of the year 
correspond to management opportunities for both water resource managers and crop growers. 
Secondly, these are the times of the year when any ENSO-related climate signals are at their 
strongest. The observed rainfall totals for each of the sub regions were extracted from the Bureau of 
Meteorology Interactive Australian Rainfall and Surface Temperature portal (see: 
http://www.bom.gov.au/cgi-bin/silo/cli_var/area_timeseries.pl).  
 
For each year, we calculate individual model ensembles (based on the average of the 9 predictions 
that each model generates for the specified target seasons). We also average these individual 
ensemble values (a total of 7) to obtain a single multi-model ensemble value for each target season 
each year. 
 
 
Results for the Mallee region 
Figure 3 provides an indication of the skill of the models as it compares the individual ensemble 
mean values for May to October rainfall from each model with the observed values, for every year 
when data is available. It also shows the multi-model ensemble mean for each year. Figure 4 shows 
the same results associated with the August to October predictions. 
 

UMC Mallee 

http://www.bom.gov.au/cgi-bin/silo/cli_var/area_timeseries.pl�
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Figure 3. Predicted versus observed May to October rainfall for the Mallee region. The different 
symbols refer to the ensemble means for each model for each year. The heavy red symbols 
correspond to the multi-model ensemble means (MME) which are accompanied by a line of best fit. 
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Figure 4. As for Figure 3 except August to October rainfall. 
 
 
Table 1 quantifies the skill levels (for both target periods) in terms of (a) how often each model was 
able to predict below average (BA) rainfall, average (AV) rainfall and above average (AA) rainfall 
categories (a 3-category prediction), (b) how often each model was able to predict above/below 
median rainfall (a 2-category prediction) and (c) the percentage variation of the observations 
explained by the predictions.  
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Table 1. Skill of DEMETER model ensembles at predicting Mallee region rainfall 
(all available years). 
 
Model  % correct   % correct   % variation 

in tercile categories  for above/below  explained 
BA AV AA  median      
     
May to October from May 1 

 
UKMET  33 36 33 ` 52   3% 
MPI  37 34 44  57   7% 
METEO  36 39 35  46   3% 
LODYC  40 39 31  58   7% 
CERF  43 35 37  55   32% 
INGV  49 32 43  63   27% 
ECMWF 35 30 39  55   5% 
 
Average  39 35 37  55  
 
Multi-model 
ensemble  40 27 33  50   27% 
 

August to October from August 1 
 
UMMET 44 35 37 ` 56   4%   
MPI  41 38 38  53   6% 
METEO  40 27 44  54   4% 
LODYC  35 29 35  46   4% 
CERF  40 32 25  47   19% 
INGV  48 22 32  53   13% 
ECMWF 44 30 47  57   2% 
 
Average 42 30 37 52 
 
Multi-model 
ensemble  40 29 40  50   5% 
 
 
For the full period, May to October, it can be seen that there is some indication of skill since the 
average 3-category scores for BA and AA rainfall are slightly greater than expected by chance 
(33%) while the average category-2  score (55%) is also above that expected by chance (50%). 
However, there is not much significant difference in the individual scores for the different models. 
The variance explained appears to indicate that the CERF and INGV models perform best, but it is 
also the case that these model results represent relatively small sample sizes (22 and 29 years 
respectively). The multi-model ensemble appears at first to be relatively skilful since the percentage 
variance explained is relatively high (27.1%). However, in terms of the 3- and 2-catgory scores it is 
not much better than chance.  
 
A similar result is evident when analysing the August to October results. In this case we might 
expect a much higher level of skill since the models are only predicting 3 months ahead in time and, 
by August1, the models should have been initialised with a much more definite El Nino or La Nina 
temperatures compared to May 1. In fact, there is very little significant difference between the skill 
scores for this later period. The multi model ensemble mean results are also unremarkable. 
 
Results for the Upper Murrumbidgee Catchment region 
The same assessment of hindcasts for the UMC region was also performed using Bureau of 
Meteorology Interactive Australian Rainfall and Surface Temperature portal (see: 
http://www.bom.gov.au/cgi-bin/silo/cli_var/area_timeseries.pl) for the observed rainfall totals. 

http://www.bom.gov.au/cgi-bin/silo/cli_var/area_timeseries.pl�
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These data are very similar to the values interpolated by Smith (2005) from the original monthly 
gridded data. 
 
The results are summarized in Table 2. In this case the average results are very similar to the Mallee 
region. For both target periods, the average 2-category score is 56% and 54% respectively with 
most models exhibiting skill at predicting below average conditions (average score 45% and 40% 
respectively). Again, there is no apparent skill at predicting average conditions (34% and 34% 
respectively). It is also apparent that there is not a great deal of difference between the 
performances of the different models. The multi-model ensemble mean does appear to exhibit 
superior skill at predicting below average conditions (47% and 47% respectively), but less so for the 
2-category scores (56% and 55% respectively). In each case, it is outscored by at least one other 
model.  
 
Table 2. As for Table 1 except for UMC region rainfall 
 
Model  % correct   % correct   % variation 

in tercile categories  for above/below  explained 
BA AV AA  median      
    

  May to October from May 1 
 
UMMET 45 42 43 ` 56   8% 
MPI  40 22 34  54   2% 
METEO  44 37 41  57   16% 
LODYC  43 37 41  56   15% 
CERF  46 36 38  55   21% 
INGV  56 35 38  61   20% 
ECMWF 38 30 44  55   12% 
 
Average  45 34 40  56  
 
Multi-model 
ensemble  47 47 43  59   15% 
   

August to October from August 1 
 
UMMET 41 39 47 ` 54   14% 
MPI  37 32 43  56   5% 
METEO  43 28 44  54   8% 
LODYC  41 42 35  52   4% 
CERF  33 36 41  55   19% 
INGV  50 30 39  61   12% 
ECMWF 37 33 36  45   2% 
 
Average  40 34 41  54 
 
Multi-model 
ensemble  47 33 29  55   10% 
 
Conclusions 
We have assessed the skill of various European coupled models at predicting seasonal rainfall for 
two sub regions (the Mallee region and the upper Murrumbidgee catchment region) within the 
southeastern Australia study area. These sub regions cover activities where climate information can 
potentially assist decision making – specifically, crop management and water resource 
management. Furthermore, given that rainfall anomalies and the influence of ENSO events on 
rainfall is relatively large-scale, the results from these sub regions are believed to provide a good 
indication of model performance over the larger region. 
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The target predictions assessed are for May to October rainfall from May 1, and August to October 
rainfall from August 1. These predictions represent time frames when the predictions can add value 
and also correspond to the time of the year when ENSO-related climate anomalies are strongest. 
 
The assessment is based on available hindcast predictions made for the years 1958 to 2001. There 
were no comparable data available from the POAMA model that could be included in this 
assessment. These will be assessed under SEACI Projects 3.1.3 and 3.2.2 
 
For both regions and both target periods, there is evidence of some skill at predicting rainfall 
anomalies. However, the level of skill is relatively low, with most of it apparently arising from the 
ability of the models to partly capture extremes associated with either El Nino or La Nina events. 
There is no evidence of significant skill at predicting average conditions, but there is evidence that 
the models do slightly better at predicting below average conditions rather than above average 
conditions. 
 
There is no significant difference between the skill of the various models. i.e. there is no indication 
of a consistently superior or inferior performance by any single model. 
 
Despite claims in the literature of the benefits of constructing multi-model ensembles, in the case of 
south-eastern Australia winter and spring rainfall we find no evidence that these provide extra skill. 
In fact, the 2-category and 3-category scores for the multi-model ensembles tend to be more inferior 
than not, when compared with individual model scores.  
 
Even if there was a slight improvement in skill, the fact that the baseline levels are so low indicates 
that the expense of generating operational multi-model ensembles is not a practical way forward in 
the Australian context.  
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